ELEMENTARY LINEAR ALGEBRA - SET 2

Polynomials, rational functions, partial fractions

1. Find all integer roots of the following real polynomials:
(a) $x^{3}+3 x^{2}-4$,
(b) $x^{4}-2 x^{3}-8 x-12$,
(c) $x^{4}-x^{2}-2$
2. Find all rational roots of the following real polynomials:
(a) $4 x^{4}+4 x^{3}+3 x^{2}-x-1$,
(b) $x^{4}-5 x^{2}+4$,
(c) $6 x^{4}+7 x^{2}+2$
3. Find all roots of the following real polynomials:

$$
\text { (a) } x^{4}+x^{3}-3 x^{2}-4 x-4, \quad \text { (b) } x^{4}+x^{3}+x^{2}+3 x-6
$$

4. Find all roots of the following complex polynomials, knowing one of their roots:
(a) $z^{4}-4 z^{3}+12 z^{2}-16 z+15, \quad z_{1}=1+2 i$
(b) $z^{4}-4 z^{3}+16 z^{2}-12 z+39, \quad z_{1}=i \sqrt{3}$
5. For given real polynomials P, Q find the remainder in the division of P by Q without using the polynomial long division:

$$
P(x)=x^{8}+3 x^{5}+x^{2}+4, \quad Q(x)=x^{2}-1
$$

6. Factor the following real polynomials into irreducible real factors:

$$
\text { (a) } x^{3}+x^{2}+x+1, \text { (b) } x^{4}-4 x^{3}+8 x, \text { (c) } x^{4}+5 x^{2}+6
$$

7. Factor the following complex polynomials into irreducible complex factors:

$$
\text { (a) } z^{3}+z^{2}+z+1, \quad \text { (b) } x^{4}+5 x^{2}+6, \quad \text { (c) } x^{6}+8
$$

8. Decompose the following real rational functions into real partial fractions:
(a) $\frac{x}{\left(x^{2}+1\right)(x-2)}$,
(b) $\frac{x-1}{x^{3}-1}$,
(c) $\frac{1}{\left(x^{2}+1\right)(x-1)(x+2)}$
9. Decompose the following complex rational functions into complex partial fractions:
(a) $\frac{1}{z^{3}-2 z^{2}+z-2}$,
(b) $\frac{z^{2}}{z^{3}-1}$,
(c) $\frac{1}{\left(z^{2}+1\right)(z-1)}$

Romuald Lenczewski

